{rfName}
Th

License and use

Icono OpenAccess

Altmetrics

Analysis of institutional authors

Mostoghiu RAuthorKnebe AAuthorCui WAuthorYepes GAuthor

Share

April 9, 2019
Publications
>
Article

The Three Hundred Project: The evolution of galaxy cluster density profiles

Publicated to:MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. 483 (3): 3390-3403 - 2019-03-01 483(3), DOI: 10.1093/mnras/sty3306

Authors: Mostoghiu R; Knebe A; Cui W; Pearce F; Yepes G; Power C; Dave R; Arth A

Affiliations

Ludwig-Maximilians-Universität München - Author
Max Planck Institut fur extraterrestrische Physik - Author
Universidad Autónoma de Madrid - Author
University of Edinburgh, Institute for Astronomy - Author
University of Nottingham - Author
University of Western Australia - Author
See more

Abstract

© 2018 The Author(s) Recent numerical studies of the dark matter density profiles of massive galaxy clusters (M halo > 10 15 M) show that their median radial mass density profile remains unchanged up to z > 1, displaying a highly self-similar evolution. We verify this by using the data set of the THE THREE HUNDRED project, i.e. 324 cluster-sized haloes as found in full physics hydrodynamical simulations. We track the progenitors of the mass-complete sample of clusters at z = 0, and find that their median shape is already in place by z = 2.5. However, selecting a dynamically relaxed subsample (∼16 per cent of the clusters), we observe a shift of the scale radius r s towards larger values at earlier times. Classifying the whole sample by formation time, this evolution is understood as a result of a two-phase halo mass accretion process. Early-forming clusters – identified as relaxed today – have already entered their slow accretion phase, hence their mass growth occurs mostly at the outskirts. Late-forming clusters – which are still unrelaxed today – are in their fast accretion phase, thus the central region of the clusters is still growing. We conclude that the density profile of galaxy clusters shows a profound self-similarity out to redshifts z ∼ 2.5. This result holds for both gas and total density profiles when including baryonic physics, as reported here for two rather distinct sub-grid models.

Keywords

Cosmological simulationsCosmology theoryDark matterDynamical stateGrowthHaloesInfallMatterMergersModelParticle hydrodynamics simulationsScatter

Quality index

Bibliometric impact. Analysis of the contribution and dissemination channel

The work has been published in the journal MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY due to its progression and the good impact it has achieved in recent years, according to the agency WoS (JCR), it has become a reference in its field. In the year of publication of the work, 2019, it was in position 12/68, thus managing to position itself as a Q1 (Primer Cuartil), in the category Astronomy & Astrophysics.

From a relative perspective, and based on the normalized impact indicator calculated from World Citations provided by WoS (ESI, Clarivate), it yields a value for the citation normalization relative to the expected citation rate of: 1.8. This indicates that, compared to works in the same discipline and in the same year of publication, it ranks as a work cited above average. (source consulted: ESI Nov 14, 2024)

This information is reinforced by other indicators of the same type, which, although dynamic over time and dependent on the set of average global citations at the time of their calculation, consistently position the work at some point among the top 50% most cited in its field:

  • Weighted Average of Normalized Impact by the Scopus agency: 2.45 (source consulted: FECYT Feb 2024)
  • Field Citation Ratio (FCR) from Dimensions: 19.92 (source consulted: Dimensions Jul 2025)

Specifically, and according to different indexing agencies, this work has accumulated citations as of 2025-07-09, the following number of citations:

  • WoS: 33
  • Scopus: 45
  • Google Scholar: 55

Impact and social visibility

From the perspective of influence or social adoption, and based on metrics associated with mentions and interactions provided by agencies specializing in calculating the so-called "Alternative or Social Metrics," we can highlight as of 2025-07-09:

  • The use, from an academic perspective evidenced by the Altmetric agency indicator referring to aggregations made by the personal bibliographic manager Mendeley, gives us a total of: 29.
  • The use of this contribution in bookmarks, code forks, additions to favorite lists for recurrent reading, as well as general views, indicates that someone is using the publication as a basis for their current work. This may be a notable indicator of future more formal and academic citations. This claim is supported by the result of the "Capture" indicator, which yields a total of: 29 (PlumX).

With a more dissemination-oriented intent and targeting more general audiences, we can observe other more global scores such as:

  • The Total Score from Altmetric: 7.25.
  • The number of mentions on the social network X (formerly Twitter): 1 (Altmetric).

It is essential to present evidence supporting full alignment with institutional principles and guidelines on Open Science and the Conservation and Dissemination of Intellectual Heritage. A clear example of this is:

  • The work has been submitted to a journal whose editorial policy allows open Open Access publication.

Leadership analysis of institutional authors

This work has been carried out with international collaboration, specifically with researchers from: Australia; Germany; United Kingdom.

There is a significant leadership presence as some of the institution’s authors appear as the first or last signer, detailed as follows: First Author (MOSTOGHIU, ROBERT ADRIEL) .