{rfName}
SD

Licencia y uso

Citaciones

10

Altmetrics

Grant support

The organization of this competition was supported by the H2020 TReSPAsS-ETN Marie Sklodowska-Curie early training network (grant agreement 860813) as well as the Hasler foundation through the "Responsible Face Recognition" (SAFER) project. The work of BioLab team received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 883356 (Disclaimer: the text reflects only the author's views, and the Commission is not liable for any use that may be made of the information contained therein). The BioLab team would like to thank Andrea Pilzer, NVIDIA AI Technology Center, EMEA, for his support. The BioLab team also acknowledge the CINECA award under the ISCRA initiative, for the availability of high-performance computing resources and support. The submitted solution by the IGD-IDiff-Face team has been funded by the German Federal Ministry of Education and Research and the Hessian Ministry of Higher Education, Research, Science and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE. The work of BiDA-PRA team was supported by INTERACTION (PID2021-126521OB-I00 MICINN/FEDER), Catedra ENIA UAM-VERIDAS en IA Responsable (NextGenerationEU PRTR TSI-100927-2023-2), and R&D Agreement DGGC/UAM/FUAM for Biometrics and Cybersecurity. The work of BiDA-PRA team was also supported by the European Union - Next Generation EU through the Italian Ministry of University and Research (MUR) within the PRIN PNRR 2022 - BullyBuster 2 the ongoing fight against bullying and cyberbullying with the help of artificial intelligence for the human wellbeing (CUP: F53D23009240001).

Análisis de autorías institucional

Deandres-Tame, IvanAutor o CoautorTolosana, RubenAutor o CoautorVera-Rodriguez, RubenAutor o CoautorFierrez, JulianAutor o Coautor

Compartir

Publicaciones
>
Conferencia Publicada

SDFR: Synthetic Data for Face Recognition Competition

Publicado en:2021 16TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2021). - 2024-01-01 (), DOI: 10.1109/FG59268.2024.10581946

Autores: Shahreza, Hatef Otroshi; Ecabert, Christophe; George, Anjith; Unnervik, Alexander; Marcel, Sebastien; Di Domenico, Nicolo; Borghi, Guido; Maltoni, Davide; Boutros, Fadi; Vogel, Julia; Damer, Naser; Sanchez-Perez, Angela; Mas-Candela, Enrique; Calvo-Zaragoza, Jorge; Biesseck, Bernardo; Vidal, Pedro; Granada, Roger; Menotti, David; DeAndres-Tame, Ivan; La Cava, Simone Maurizio; Concas, Sara; Melzi, Pietro; Tolosana, Ruben; Vera-Rodriguez, Ruben; Perelli, Gianpaolo; Orru, Giulia; Marcialis, Gian Luca; Fierrez, Julian

Afiliaciones

Ecole Polytechn Fed Lausanne EPFL, Lausanne, Switzerland - Autor o Coautor
Facephi Biometria SA, R&D Ctr, Alicante, Spain - Autor o Coautor
Fed Inst Mato Grosso IFMT, Pontes E Lacerda, Brazil - Autor o Coautor
Fed Univ Parana UFPR, Curitiba, PR, Brazil - Autor o Coautor
Fraunhofer Inst Comp Graph Res IGD, Darmstadt, Germany - Autor o Coautor
Idiap Res Inst, Martigny, Switzerland - Autor o Coautor
Tech Univ Darmstadt, Darmstadt, Germany - Autor o Coautor
Unico Idtech, Sao Paulo, SP, Brazil - Autor o Coautor
Univ Alicante, Alicante, Spain - Autor o Coautor
Univ Autonoma Madrid UAM, Madrid, Spain - Autor o Coautor
Univ Bologna, Bologna, Italy - Autor o Coautor
Univ Cagliari UNICA, Cagliari, Italy - Autor o Coautor
Univ Lausanne UNIL, Lausanne, Switzerland - Autor o Coautor
Ver más

Resumen

Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns. With the recent advances in generative models, recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets. This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024) and established to investigate the use of synthetic data for training face recognition models. The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones. In the first task, the face recognition backbone was fixed and the dataset size was limited, while the second task provided almost complete freedom on the model backbone, the dataset, and the training pipeline. The submitted models were trained on existing and also new synthetic datasets and used clever methods to improve training with synthetic data. The submissions were evaluated and ranked on a diverse set of seven benchmarking datasets. The paper gives an overview of the submitted face recognition models and reports achieved performance compared to baseline models trained on real and synthetic datasets. Furthermore, the evaluation of submissions is extended to bias assessment across different demography groups. Lastly, an outlook on the current state of the research in training face recognition models using synthetic data is presented, and existing problems as well as potential future directions are also discussed.

Palabras clave

Indicios de calidad

Impacto bibliométrico. Análisis de la aportación y canal de difusión

2025-06-12:

  • Scopus: 10

Impacto y visibilidad social

Desde la dimensión de Influencia o adopción social, y tomando como base las métricas asociadas a las menciones e interacciones proporcionadas por agencias especializadas en el cálculo de las denominadas “Métricas Alternativas o Sociales”, podemos destacar a fecha 2025-06-12:

  • La utilización de esta aportación en marcadores, bifurcaciones de código, añadidos a listas de favoritos para una lectura recurrente, así como visualizaciones generales, indica que alguien está usando la publicación como base de su trabajo actual. Esto puede ser un indicador destacado de futuras citas más formales y académicas. Tal afirmación es avalada por el resultado del indicador “Capture” que arroja un total de: 8 (PlumX).

Análisis de liderazgo de los autores institucionales

Este trabajo se ha realizado con colaboración internacional, concretamente con investigadores de: Brazil; Germany; Italy; Switzerland.

Existe un liderazgo significativo ya que algunos de los autores pertenecientes a la institución aparecen como primer o último firmante, se puede apreciar en el detalle: Último Autor (FIERREZ AGUILAR, JULIAN).