{rfName}
He

License and use

Altmetrics

Impact on the Sustainable Development Goals (SDGs)

Analysis of institutional authors

Weiland CAuthor

Share

Publications
>
Article

Heavy neutrino impact on the triple Higgs coupling

Publicated to:PHYSICAL REVIEW D. 94 (1): - 2016-07-05 94(1), DOI: 10.1103/PhysRevD.94.013002

Authors: Baglio J; Weiland C

Affiliations

Durham University - Author
Universität Tübingen - Author

Abstract

© 2016 American Physical Society. We present the first calculation of the one-loop corrections to the triple Higgs coupling in the framework of a simplified 3+1 Dirac neutrino model, that is three light neutrinos plus one heavy neutrino embedded in the Standard Model (SM). The triple Higgs coupling is a key parameter of the scalar potential triggering the electroweak symmetry-breaking mechanism in the SM. The impact of the heavy neutrino can be as large as +20% to +30% for parameter points allowed by the current experimental constraints depending on the tightness of the perturbative bound. This can be probed at the high-luminosity LHC, at future electron-positron colliders and at the Future Circular Collider in hadron-hadron mode, an envisioned 100 TeV pp machine. Our calculation, being done in the mass basis, can be extended to any model using the neutrino portal. In addition, the effects that we have calculated are expected to be enhanced if additional heavy fermions with large Yukawa couplings are included, as in low-scale seesaw mechanisms.

Keywords

Astronomia / físicaAstronomy & astrophysicsBiotecnologíaEngenharias iiiEngenharias ivEnsinoGeociênciasInterdisciplinarMatemática / probabilidade e estatísticaNuclear and high energy physicsPhysics and astronomy (miscellaneous)Physics, particles & fields

Quality index

Bibliometric impact. Analysis of the contribution and dissemination channel

The work has been published in the journal PHYSICAL REVIEW D due to its progression and the good impact it has achieved in recent years, according to the agency WoS (JCR), it has become a reference in its field. In the year of publication of the work, 2016, it was in position 14/63, thus managing to position itself as a Q1 (Primer Cuartil), in the category Astronomy & Astrophysics.

From a relative perspective, and based on the normalized impact indicator calculated from the Field Citation Ratio (FCR) of the Dimensions source, it yields a value of: 3.86, which indicates that, compared to works in the same discipline and in the same year of publication, it ranks as a work cited above average. (source consulted: Dimensions Jun 2025)

Specifically, and according to different indexing agencies, this work has accumulated citations as of 2025-06-17, the following number of citations:

  • WoS: 21
  • Scopus: 12
  • OpenCitations: 5

Impact and social visibility

From the perspective of influence or social adoption, and based on metrics associated with mentions and interactions provided by agencies specializing in calculating the so-called "Alternative or Social Metrics," we can highlight as of 2025-06-17:

  • The use, from an academic perspective evidenced by the Altmetric agency indicator referring to aggregations made by the personal bibliographic manager Mendeley, gives us a total of: 3.
  • The use of this contribution in bookmarks, code forks, additions to favorite lists for recurrent reading, as well as general views, indicates that someone is using the publication as a basis for their current work. This may be a notable indicator of future more formal and academic citations. This claim is supported by the result of the "Capture" indicator, which yields a total of: 3 (PlumX).

With a more dissemination-oriented intent and targeting more general audiences, we can observe other more global scores such as:

  • The Total Score from Altmetric: 1.25.
  • The number of mentions on the social network Facebook: 1 (Altmetric).
  • The number of mentions on the social network X (formerly Twitter): 3 (Altmetric).

It is essential to present evidence supporting full alignment with institutional principles and guidelines on Open Science and the Conservation and Dissemination of Intellectual Heritage. A clear example of this is:

  • The work has been submitted to a journal whose editorial policy allows open Open Access publication.
Continuing with the social impact of the work, it is important to emphasize that, due to its content, it can be assigned to the area of interest of ODS 7 - Ensure access to affordable, reliable, sustainable and modern energy for all, with a probability of 41% according to the mBERT algorithm developed by Aurora University.

Leadership analysis of institutional authors

This work has been carried out with international collaboration, specifically with researchers from: Germany; United Kingdom.

There is a significant leadership presence as some of the institution’s authors appear as the first or last signer, detailed as follows: Last Author (WEILAND ., CEDRIC).